

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 4607–4610

Tetrahedron Letters

Heterogeneous Shvo-type ruthenium catalyst: dehydrogenation of alcohols without hydrogen acceptors

Jun Ho Choi, Namdu Kim, Yong Jun Shin, Jung Hye Park and Jaiwook Park*

Center for Integrated Molecular System, Department of Chemistry, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San 31 Hyoja Dong, Pohang 790–784, Republic of Korea

Received 10 March 2004; revised 20 April 2004; accepted 22 April 2004

Abstract—A Shvo-type diruthenium complex is heterogenized by a sol–gel process, which catalyzes the conversion of alcohols to carbonyl compounds and molecular hydrogen without any additive. The heterogeneous catalyst is recoverable by simple filtration, stable in the air, and reusable.

2004Elsevier Ltd. All rights reserved.

The Shvo complex, $[(\eta^5-Ph_4C_4CO)_2H]Ru_2((CO)_4)(\mu-H)$ (1), is a versatile catalyst.¹ It has been used for many homogeneous hydrogen-transfer reactions such as the disproportionation of aldehydes to esters,² the reduction of aldehydes and ketones,³ the Oppenauer-type oxidation of alcohols and amines, $4,5$ and the racemization of alcohols and amines. $6,7$ During our study on the dynamic kinetic resolution of alcohols with the catalytic activity for the racemization of alcohols,⁶ we recognized that 1 catalyzes also the dehydrogenation of alcohols and found a brief report that describes the catalytic dehydrogenation of 2-octanol and cyclohexanol at 145 °C by a dimeric ruthenium complex, $[(\eta^5 Ph_4C_4CO$)(CO)₂Ru₁₂, which readily converts into 1 in the reaction with alcohols.⁸

For practical uses, heterogeneous catalysts are preferable to homogeneous one, thus we planned to synthesize a simple derivative of 1, which can be easily employed in the sol–gel process to give a recoverable and reusable catalyst. First, we examined the dehydrogenation of 1-phenylethanol with 1–3 to see the substituent effect of the pentadienyl ring on the catalytic activity (Scheme 1). Interestingly, 1 having phenyl substituents showed the highest activity; under the conditions of the entry 5 in Table 1, acetophenone was produced in 60% yield by 2 and in 68% by 3. Then, the efficiency of the

$$
R^{1/2} \xrightarrow{PH} \xrightarrow{[Ru]} R^{1/2} \xrightarrow{Q} R^{2/2} R^{2}
$$

Scheme 1.

Table 1. Dehydrogenation of 1-phenylethanol by 1 in various conditions

Entry	$mol\%$	Concentration (M)	Time (h)	Solvent	Yield $(\%)^a$
1	4.0	0.1	24	Ethyl acetate	22.8
2	4.0	0.1	24	Benzene	49.5
3	4.0	0.1	24	Heptane	59.7
4	4.0	0.1	9	Octane	98.0
5	4.0	0.1	9	Toluene	89.3
6	2.0	0.1	9	Toluene	81.0
7	1.0	0.1	9	Toluene	65.9
8	8.0	0.1	6	Toluene	94.0
9	4.0	0.5	9	Toluene	95.4

 a By GC.

Keywords: Silica sol–gel; Diruthenium; Dehydrogenation; Alcohols.

^{*} Corresponding author. Tel.: +82-54-279-2117; fax: +82-54-279-3399; e-mail: [pjw@postech.ac.kr](mail to: pjw@postech.ac.kr
)

^{0040-4039/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.04.113

dehydrogenation was optimized with using 1 with varying conditions (Table 1). 9 The reaction rate depended on the reaction temperature; it was almost completed in 9 h in refluxing octane (bp 126° C) while in refluxing benzene (bp 80° C) the reaction proceeded in less than 50% even after 24h, (entry 2 vs entry 4). It was notable that a more concentrated solution led to a higher yield (entry 8 vs entry 9).

We thought that the derivatives of 1, which contain hydroxy groups, would be suitable for sol–gel processes to afford robust catalysts.10 The Shvo-type diruthenium complex 10, which has two (hydroxylmethyl)phenyl groups, was synthesized from the cyclopetadienone 7 by the procedure reported by Shvo and Menashe^{2,11} Meanwhile, 7 was prepared from 4-(phenylethynyl)benzaldehyde (4) ¹² through a three-step process: (1) protection of the formyl group of 4; (2) oxidation of the triple bond to give the 1,2-diketone 6 ¹³ (3) coupling of 6 and diphenylacetone (Scheme 2).¹⁴ The silica gel entrapping 10 was prepared by the sol–gel process involving a mixture of 10, tetramethyl orthosilicate, methanol, water and THF. The resulting gel was washed with methanol and dried under vacuum to give 11 as yellow powder entrapping 10 in 77% yield.¹⁵

The heterogeneous catalyst 11 showed a better activity than 1 in the dehydrogenation of 1-phenylethanol, which was completed in 6 h. The catalyst was recoverable by simple filtration, and reusable several times. Although the activity decreased gradually, over 90% of the original activity was maintained in the fourth use: 1st, 100%; 2nd, 97.4%; 3rd, 96.0%; 4th, 90.5%; 5th, 86.8%. The catalyst 11 was effective for various alcohols (Table 2). Aliphatic alcohols as well as benzylic alcohols were dehydrogenated to the corresponding ketones in high yields. The production of a γ -lactone from 1,2benzenedimethanol implicates the dehydrogenation of the intermediate hemiacetal. However, the reaction of benzyl alcohol was relatively slow, and produced benzyl benzoate in less than 0.5%. In comparison to the known

Table 2. Dehydrogenation of alcohols with 11^a

Entry	Substrate	Time (h)	Yield $(\%)^b$
	1-Phenylethanol	6	97
	1-(4-Chlorophenyl) ethanol	6	97
3	1-(4-Methoxyphenyl) ethanol		97
4	1-Cyclohexylethanol	8	97
	2-Octanol	6	97
	Cyclohexanol	20	100 ^c
	1,2-Benzenedimethanol	6	96 ^d
	Benzyl alcohol	6	41 ^e

^a In refluxing toluene (0.1 M) with 4.4 mol% of 11. ^b Isolated vield.

c By GC.

 d The product was 3H-isobenzofuran-1-one.

^e By GC with using biphenyl as the internal standard.

dehydrogenation catalysts such as $RuH_2(PPh_3)_4$,¹⁶ $I r H_5(^i PrP)_2$,¹⁷ $I r H_2$ {C₆H₃-2,6-(CH₂P-t-Bu₂)₂},¹⁸ Ru(OC $OCF₃$ ₂(CO)(PPh₃)₂,¹⁹ Ru₃(CO)₁₂/PPh₃,²⁰ 11 has several advantages: stable in the air and easy to handle; active without additives; active under mild conditions.

A possible pathway for the catalytic dehydrogenation is proposed in Scheme 3: The diruthenium complex 1 is in equilibrium with mononuclear species 1A and 1B.²¹ An alcohol reacts with the 16-electron species 1A to give the hydride complex 1B and the corresponding ketone. Then, 1B loses molecular hydrogen with being coupled with another **1B** to form **1**.

In summary, we synthesized a heterogeneous version of the versatile Shvo complex through sol–gel process, and demonstrated that it is a recoverable and reusable catalyst for the efficient dehydrogenation of alcohols.

Acknowledgements

This work was supported financially by the Center for Integrated Molecular System, the National Laboratory of Chirotechnology and MOE through the BK21 project.

References and notes

- 1. (a) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400–7402; (b) Jung, H. M.; Shin, S. T.; Kim, Y. H.; Kim, M.-J.; Park, J. Organometallics 2001, 20, 3370–3372; (c) Jung, H. M.; Choi, J. H.; Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J. Organometallics 2002, 21, 5674–5677.
- 2. Menashe, N.; Shvo, Y. Organometallics 1991, 10, 3885– 3891.
- 3. Shvo, Y.; Czarkie, D. J. Organomet. Chem. 1986, 315, C25–C28.
- 4. (a) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Bäckvall, J.-E. Chem. Eur. J. 1996, 2, 1533–1536; (b) Almeida, M. L. S.; Kočovský, P.; Bäckvall, J.-E. J. Org. Chem. 1996, 61, 6587–6590; (c) Csjernyik, G.; Ell, A. H.; Fadini, L.; Pugin, B.; Bäckvall, J.-E. *J. Org. Chem.* 2002, 67, 1657-1662.
- 5. Ell, A. H.; Samec, J. S. M.; Brasse, C.; Bäckvall, J.-E. Chem. Commun. 2002, 1144–1145.
- 6. (a) Larsson, A. L. E.; Persson, B. A.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 1997, 36, 1122–1211; (b) Persson,

B. A.; Larsson, A. L. E.; Ray, M. L.; Bäckvall, J.-E. J. Am. Chem. Soc. 1999, 121, 1645–1650; (c) Kim, M.-J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578– 587; (d) Pàmies, O.; Bäckvall, J.-E. Chem. Rev. 2003, 103, 3247–3261.

- 7. Pamies, O.; Ell, A. H.; Samec, J. S. M.; Hermanns, N.; Bäckvall, J.-E. Tetrahedron Lett. 2002, 43, 4699-4702.
- 8. Blum, Y.; Shvo, Y. J. Organomet. Chem. 1985, 282, C7– $C10$
- 9. A typical procedure for dehydrogenation: In a 50 mL flask equipped with a grease-free high vacuum stopcock, 1 (8.6 mg, 0.0080 mmol) and 1-phenylethanol (0.20 mmol) were mixed with dry toluene (2 mL) under Ar atmosphere. The mixture was heated to reflux. The reaction was checked by GC.
- 10. (a) Zehl, G.; Bischoff, S.; Mizukami, F.; Isutzu, H.; Bartoszek, M.; Jancke, H.; Lücke, B.; Maeda, K. J. Mater. Chem. 1995, 5, 1893–1897; (b) Lu, Z.; Lindner, E.; Mayer, H. A. Chem. Rev. 2002, 102, 3543–3578; (c) Kawano, S.; Tamaru, S.; Fujita, N.; Shinkai, S. Chem. Eur. J. 2004, 10, 343–351.
- 11. Compound 5: yield: 99%; mp: 115 °C; ¹H NMR (CDCl₃) δ 7.46–7.57 (m, 6H), 7.30–7.37 (m, 3H), 5.39 (s, 1H), 3.78 (d, $J = 11.2$ Hz, 2H), 3.65 (d, $J = 10.7$ Hz, 2H), 1.29 (s, 3H), 0.80 (s, 3H); ¹³C NMR (CDCl₃) δ 138.6, 131.8, 131.8, 128.8, 128.5, 126.4, 124.0, 123.4, 101.5, 89.9, 89.5, 77.8, 30.5, 23.3, 22.1; MS (EI): m/z : 292.14 (M⁺); Anal. Calcd for $C_{20}H_{20}O_2$: C, 82.16; H, 6.89. Found: C, 82.25; H, 6.81. Compound 6: yield: 66% ; mp: $95.5\,^{\circ}\text{C}$; ¹H NMR (CDCl₃) δ 7.92–8.0 (m, 4H), 7.63–7.67 (m, 3H), 7.47–7.53 (m, 2H), 5.44 (s, 1H), 3.78 (d, $J = 11.1$ Hz, 2H), 3.66 (d, $J = 11.0$ Hz, 2H), 1.27 (s, 3H), 0.81 (s, 3H); ¹³C NMR δ 194.7, 194.6, 145.3, 135.1, 133.4, 133.2, 130.2, 130.1, 129.2, 127.1, 100.7, 77.9, 30.5, 23.2, 22.1; FT-IR (KBr) 1667 cm⁻¹; MS (EI): m/z : 324.15 (M⁺); Anal. Calcd for C20H20O4: C, 74.06; H, 6.21. Found: C, 74.02; H, 6.13. Compound 7: yield: 82%; mp: 200-202 °C; ¹H NMR δ 7.10–7.36 (m, 15H), 6.88–6.98 (m, 4H), 5.33 (s, 1H), 3.76 (d, $J = 11.2$ Hz, 2H), 3.63 (d, $J = 10.7$ Hz, 2H), 1.28 (s, 3H), 0.79 (s, 3H); ¹³C NMR δ 200.5, 154.7, 154.0, 238.8, 133.7, 133.2, 130.9, 130.8, 129.7, 129.5, 128.7, 128.3, 128.2, 127.7, 127.6, 126.1, 125.9, 125.6, 101.8, 77.9, 23.3, 22.1, FT-IR (KBr) 1707 cm⁻¹; MS (EI): m/z : 498.31 (M⁺); Anal. Calcd for $C_{35}H_{30}O_3$: C, 84.31; H, 6.06. Found: C, 84.11; H, 6.24.
	- Compound 8: yield: 98%; mp: 143 °C; ¹H NMR (CDCl₃) δ 6.90–7.50 (m, 38H), 5.21 (s, 2H), 3.68 (d, $J = 10.9$ Hz, 4H), 3.54 (d, $J = 11.1$ Hz, 4H), 1.22 (s, 6H), 0.75 (s, 6H), -18.43 (s, 1H); ¹³C NMR δ 201.0, 200.9, 200.8, 200.7, 154.6, 138.1, 132.2, 132.1, 131.4, 131.3, 131.3, 131.2, 130.7, 130.6, 130.4, 130.4, 130.3, 128.1, 128.0, 127.8, 127.0, 125.6, 103.5, 103.1, 103.0, 101.6, 88.1, 88.1, 88.0, 87.9, 77.7, 30.4, 23.2, 22.0; FT-IR (KBr) 2030, 2005, 1977 cm⁻¹; MS 23.2, 22.0; FT-IR (KBr) 2030, 2005, 1977 cm⁻¹ (FAB): m/z : 1314.16 (M⁺+1); Anal. Calcd for $C_{74}H_{62}O_{10}R_{12}$: C, 67.67; H, 4.76. Found: C, 67.65; H, 4.83.

Compound 9: yield: 98% ; mp: 139.5 °C (dec); ¹H NMR (CDCl₃) δ 9.85 (s, 2H), 7.49–7.56 (m, 4H), 6.93–7.22 (m, 34 H), -18.37 (s, 1H); ¹³C NMR (CDCl₃) δ 200.8, 200.9, 200.6, 200.5, 191.6, 154.8, 137.7, 135.7, 132.8, 132.1, 131.2, 130.2, 130.0, 129.9, 129.0, 128.5, 128.2, 128.0, 127.4, 127.2, 104.4, 104.3, 101.9, 101.7, 88.7, 88.5, 87.8, 87.6; FT-IR (KBr) 2035, 2007, 1978 cm⁻¹; MS (FAB): m/z : 1142.17 $(M^+ + 1)$; Anal. Calcd for C₆₄H₄₂O₈Ru₂:C, 67.36; H, 3.71. Found: C, 67.35; H, 3.73.

Compound 10: yield: 73%; mp: 83 °C; ¹H NMR (CDCl₃) δ 7.20–6.90 (m, 38 H), 4.48 (s, 4H), -18.39 (s, 1H); ¹³C NMR (CDCl₃) δ 201.0, 154.5, 140.7, 132.3, 132.2, 132.1, 131.4, 131.3, 131.2, 131.1, 130.8, 130.4, 130.0, 128.1, 128.0, 127.9, 127.0, 126.2, 103.6, 103.5, 103.4, 103.4, 88.2, 88.1, 88.0, 87.9, 64.8; FT-IR (KBr) 2034, 2006, 1976 cm⁻¹; MS (FAB): m/z : 1146.76 (M⁺+1); Anal. Calcd for $C_{64}H_{46}O_8Ru_2:C, 67.12; H, 4.05.$ Found: C, 67.36; H, 4.04.

- 12. De La Rosa, M. A.; Velarde, E.; Guzman, A. Synth. Commun. 1990, 20, 2059–2064.
- 13. Yusybov, M. S.; Filimonov, V. D. Synthesis 1991, 131– 132.
- 14. (a) Neckers, D. C.; Hauck, G. J. Org. Chem. 1983, 48, $4691-4695$; (b) Jutzi, P.; Siemeling, U.; Müller, A.; Bögge, H. Organometallics 1989, 8, 1744–1750.
- 15. The silica sol–gel process for 11: A mixture of 1 (50 mg), tetramethyl orthosilicate (3.5 mL), degassed methanol (2.5 mL), degassed water (2.5 mL) and degassed THF (5.0 mL) in 50 mL flask equipped with a grease-free high vacuum stopcock was stirred at room temperature for 24h under Ar and then it was stand aside for 24h at room temperature, which yielded homogeneous sol–gel. After removing volatiles under vacuum, the resulting yellow solid was washed with methanol and dried under vacuum

to afford 11 (1.639 g); 0.362 wt % Ru by Induced Coupled Plasma (ICP) analysis.

- 16. Mrahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Yaki, H. Tetrahedron Lett. 1981, 22, 5327–5330.
- 17. Lin, Y.; Ma, D.; Lu, X. Tetrahedron Lett. 1987, 28, 3115– 3118.
- 18. Morales-Morales, D.; Redon, R.; Wanf, Z.; Lee, D. W.; Yung, C.; Magnuson, K.; Jensen, C. M. Can. J. Chem. 2001, 79, 823–829.
- 19. Ligthart, G. B. W. L.; Meijer, R. H.; Donners, M. P. J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Tetrahedron Lett. 2003, 44, 1507–1509.
- 20. Meijer, R. H.; Ligthart, G. B. W. L.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A.; Mills, A. M.; Kooijman, H.; Spek, A. L. Tetrahedron 2004, 60, 1065– 1072.
- 21. (a) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123, 1090-1100; (b) Samec, J. S. M.; Bäckvall, J.-E. Chem. Eur. J. 2002, 8, 2955–2961.